Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Int ; 172: 107750, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669287

RESUMO

Oceanic plastic pollution is of major concern to marine organisms, especially filter feeders. However, limited is known about the toxic effects of the weathered microplastics instead of the pristine ones. This study evaluates the effects of weathered polystyrene microplastic on a filter-feeder amphioxus under starvation conditions via its exposure to the microplastics previously deployed in the natural seawater allowing for the development of a mature biofilm (so-called plastisphere). The study focused on the integration of physiological, histological, biochemical, molecular, and microbiota impacts on amphioxus. Overall, specific alterations in gene expression of marker genes were observed to be associated with oxidative stresses and immune systems. Negligible impacts were observed on antioxidant biochemical activities and gut microbiota of amphioxus, while we highlighted the potential transfer of 12 bacterial taxa from the plastisphere to the amphioxus gut microbiota. Moreover, the classical perturbation of body shape detected in control animals under starvation conditions (a slim and curved body) but not for amphioxus exposed to microplastic, indicates that the microorganisms colonizing plastics could serve as a nutrient source for this filter-feeder, commitment with the elevated proportions of goblet cell-like structures after the microplastic exposure. The multidisciplinary approach developed in this study underlined the trait of microplastics that acted as vectors for transporting microorganisms from the plastisphere to amphioxus.


Assuntos
Microbioma Gastrointestinal , Anfioxos , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Água do Mar/microbiologia
2.
Environ Pollut ; 315: 120463, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36272613

RESUMO

We measured phytoplankton primary production and heterotrophic bacterial activities on microplastics and seawater in the Northwestern Mediterranean Sea during two 3-month spring periods over 2 consecutive years. Microorganisms growing on a 5 mm diameter low density polyethylene films (LDPE; 200 µm thick) faced two contrasting conditions depending on the year. Spring 2018 was characterized by consistent nutrient inputs and bloom development. In spring 2019, nutrient inputs and bloom were low. For the first time, we observed a clear coupling between primary production and heterotrophic prokaryote production on microplastics during both years, but with different intensity between years that reflected the crucial role of the trophic environmental conditions (nutrient supply) in shaping microbial activities on plastics. We found that high primary production on plastics could support the whole (net autotrophy) or the majority of the bacterial carbon demand needed for heterotrophic activities, supplemented by other carbon sources if surrounding waters are highly productive. We propose that microbial activity on plastics influences the microbial community in the surrounding seawater, especially when the environmental conditions are less favorable. An illustrative image of the role of plastics in the environment could be that of an inverter in an electrical circuit that mitigates both positive and negative variations. Our results highlight the potential role of the plastisphere in shaping biogeochemical cycles in the context of increasing amounts of plastic particles in the marine environment.


Assuntos
Microplásticos , Plásticos , Processos Heterotróficos , Água do Mar/química , Biofilmes , Bactérias , Polietileno , Processos Autotróficos , Carbono
3.
Front Microbiol ; 12: 734782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867851

RESUMO

The microorganisms living on plastics called "plastisphere" have been classically described as very abundant, highly diverse, and very specific when compared to the surrounding environments, but their potential ability to biodegrade various plastic types in natural conditions have been poorly investigated. Here, we follow the successive phases of biofilm development and maturation after long-term immersion in seawater (7 months) on conventional [fossil-based polyethylene (PE) and polystyrene (PS)] and biodegradable plastics [biobased polylactic acid (PLA) and polyhydroxybutyrate-co-hydroxyvalerate (PHBV), or fossil-based polycaprolactone (PCL)], as well as on artificially aged or non-aged PE without or with prooxidant additives [oxobiodegradable (OXO)]. First, we confirmed that the classical primo-colonization and growth phases of the biofilms that occurred during the first 10 days of immersion in seawater were more or less independent of the plastic type. After only 1 month, we found congruent signs of biodegradation for some bio-based and also fossil-based materials. A continuous growth of the biofilm during the 7 months of observation (measured by epifluorescence microscopy and flow cytometry) was found on PHBV, PCL, and artificially aged OXO, together with a continuous increase in intracellular (3H-leucine incorporation) and extracellular activities (lipase, aminopeptidase, and ß-glucosidase) as well as subsequent changes in biofilm diversity that became specific to each polymer type (16S rRNA metabarcoding). No sign of biodegradation was visible for PE, PS, and PLA under our experimental conditions. We also provide a list of operational taxonomic units (OTUs) potentially involved in the biodegradation of these polymers under natural seawater conditions, such as Pseudohongiella sp. and Marinobacter sp. on PCL, Marinicella litoralis and Celeribacter sp. on PHBV, or Myxococcales on artificially aged OXO. This study opens new routes for a deeper understanding of the polymers' biodegradability in seawaters, especially when considering an alternative to conventional fossil-based plastics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA